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Abstract

Demand for spectral-like spatial routines to resolve fine-scale physics is easily satisfied by compact finite differencing.
Commonly, the lower-order multi-parameter families at (and near) non-periodic boundaries are independently tuned to
meet or exceed the high-order resolution character of the field stencil. Unfortunately, that approach quantifies a false influ-
ence of the boundary scheme on the resultant interior dispersive and dissipative consequences of the compound template.
Knowing that each composite template owns three ingredients that define their numerical character, only their formal
accuracy and global stability have been properly treated in a coupled fashion. The present work presents a companion
means for quantifying the resultant spatial resolution properties. The procedure particularly focuses on the multi-param-
eter families used to diminish the dispersive and dissipative errors at the non-periodic boundaries. The process introduces a
least-squares technique of the target field stencil to optimize the free parameters of the boundary scheme. Application of
the optimized templates to both the linear convection and Burgers equations at a fictitious non-periodic boundary showed
major reductions of the predictive error.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Not surprisingly compact finite differences for approximating derivatives is a popular choice when resolving
fine-scale physics. The spatial resolution and order increase dramatically over comparable standard explicit
schemes when differencing the same number of grid points. Highest orders can reach spectral-like spatial res-
olution while simultaneously treating a wide range of boundary conditions. This fact is especially beneficial for
efficiently resolving the smaller spatial scales near the boundaries in complex applications. Often nearly three-
fourths of the resolvable scales in the field hold a resolving efficiency of 90% or better. Both conservative and
non-conservative forms of the governing formulations are easily handled by compact differencing. One nota-
ble sacrifice of improving the spatial resolution and order is the potential loss of smooth solutions as well as
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temporal stability. But these drawbacks have been thoroughly investigated since inception of compact differ-
encing with remedial measures now clearly understood.

Early applications of compact finite differencing include Hirsh [1] who centered on resolving the steady fluid
physics of a Blasius boundary layer and shear driven cavity using the standard fourth-order Pade-type scheme.
While the former application approximated the boundary derivatives by a one-sided time-lagged explicit for-
mulation, the latter solutions evaluated the boundary derivative using a Pade-type approximant. Given the
same number of grids points necessary for standard second-order differencing, Hirsh demonstrated fourth-
order solution accuracy of the Pade-type scheme. Soon afterward, Adam [2] introduced third-order one-sided
compact differencing to circumvent exterior fictitious points as required to uphold the interior scheme at the
boundary. An early treatment of formal error in compact finite differencing came from Gustafsson [3] who
realized pth interior accuracy of a hyperbolic system with at least a pth � 1 definition prescribed at the bound-
ary. Christie [4] found unacceptable numerical oscillations of the fourth-order Pade-type stencil for applica-
tions dominated by convection, but alleviated this behavior by simply introducing an upwinding
component. Other early applications of Pade-type stencils dealt with resolving the fine-scale turbulent physics
through advanced methodologies such as direct numerical and large-eddy simulations (DNS and LES). As an
example, Mansour et al. [5] compared the fourth-order Pade-type scheme in their LES computations against
the same order (lower resolution) explicit central method for resolving the decay of isotropic turbulence (peri-
odic boundary conditions). Inasmuch as the filtering technique and subgrid-scale model shadowed the salient
effects of the different discretization choices, Mansour et al. found no discernible improvements in the turbu-
lent energy spectra by switching to the compact scheme. Later, Sandham and Reynolds [6] mixed a spectral
technique with a modified sixth-order Pade-type scheme [7] to reach DNS resolution in the non-reflecting
non-periodic direction of a compressible mixing layer. They also successfully tested their mixed numerics
for resolving the small-scale secondary instabilities of a similar but incompressible layer at low Mach number
(Ma = 0.4).

With the continuous rising demand for realistic applications whose solutions call for high resolution as well
as complex topologies and boundary conditions, compact finite differencing is aptly replaced costly spectral
developments. For instance, Joslin [8] introduced a conservative sixth-order Pade-type template with
fourth-order compact stencils at the boundary and first field points to resolve the fine scale instabilities along
the attachment-line direction in a swept Hiemenz flow. This choice coupled with a Chebyshev series gave
results that illustrated the Hiemenz flow as an acceptable model of the transition mechanism along swept
wings. One of the first uses of compact upwinding comes from Adams and Shariff [9] for shock capturing.
Their high-order upwind stencil supplied enough numerical dissipation to be combined with an essentially
non-oscillatory (ENO) procedure for dampening the under-resolved smallest scales of the shock-turbulence
communication.

Besides fluid physics, compact finite differencing has recently emerged with great success in computational
acoustics. Compact schemes are preferred over standard explicit differencing in this discipline because they can
potentially lower the dispersive (and dissipative) errors in the numerical approximations of the short waves.
For example, Hixon and Turkel [10] developed a high-order compact MacCormack-type scheme for compu-
tational aeroacoustics (CAA) that retained fourth-order accuracy in both the forward and backward opera-
tors. They exercised their stencil against three sample problems as chosen from the first and second CAA
workshops [11,12]. Likewise, Kim and Lee [13] extracted problems from the first CAA workshop to test their
highly optimized template that housed several compact stencils including one-sided schemes at the boundaries
and the adjacent first and second interior points. More recently, Popescu et al. [14] found improve preserva-
tion of the nonlinear wave profile when the finite difference versions of the Dispersion-Relation-Preserving [15]
and optimized-prefactored-compact [16] schemes were reformulated into a finite volume molecule. Given the
many successes such as these mentioned above, applications of compact finite differencing over the past decade
has grown immensely spanning both internal and external topologies that involve complex physics such as
combustion [17], cavitation [18], and electrodynamics [19]; as well as many other provocative phenomena.

One can easily assess the spatial resolution and temporal stability properties of their particular compact
differencing strategy by employing Fourier analysis. The real components of the resultant modified wavenum-
bers measure the dispersive nature of the stencil while the imaginary elements indicate expected dissipation.
Apart from any boundary influence, only the odd ordered stencils will dampen the high wavenumber spectral
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energy. Undoubtedly, Lele [7] presented the most comprehensive Fourier treatment of compact finite differ-
encing that included one-sided stencils to close the field solutions given non-periodic boundary conditions.
He illustrated spectral-like resolution of the larger stencils by fine-tuning the free parameters that can arise
through reduction in the formal order. He also demonstrated global stability of several Pade-type templates
(including non-conservative boundary effects) by conducting a modal analysis of the discretized linear convec-
tion equation. Similarly, Carpenter et al. [20] examined global pth accuracy and GKS stability [16] of both the
fourth- and sixth-order Pade-type stencils as coupled with a broad mixture of compact definitions at the
boundary and first field points (sixth-order only). Those mixtures of the multi-parameter family that were
found conditionally unstable, but globally accurate, were tuned until all eigenvalues of the final template fell
inside the left-half plane of the stability spectrum.

When designing a compact finite differencing strategy for approximating the governing formulation of a
physical event, one must be careful about preserving the intended accuracy, stability and resolution. With cyc-
lic end-conditions these attributes are formally equivalent both locally and globally. But non-periodic bound-
aries can potentially erode their projected gains. Their own spatial resolution properties can propagate well
into the adjacent field. As discussed above, certain one-sided stencils selected for the latter boundary deriva-
tives (as well as those near boundary points for very high field accuracy) degrade both the accuracy and sta-
bility of the field template. The inclusive works of Lele [7] and Carpenter et al. [20] proved that the respective
analyses must treat the composite template to quantify the resultant spatial accuracy and temporal stability
from a global perspective. Unfortunately, no such companion treatment presently exists for understanding
the operative field resolution.

In the present paper, we will investigate the influence of various compact boundary stencils on the adjacent
field spatial resolution. Spatial resolution differs from spatial accuracy in a sense that two separate stencils can
own the same truncation error, but resolve the physical wave quite differently. We will deviate from the present
standard practice of quantifying the spatial resolution character of each stencil separately and locally. The
procedure actually takes a path similar to Lele’s Fourier exercise on universal stability, except herein we quan-
tify the linked dispersive and dissipative errors of the composite template. We will place strong emphasis on
the family of multi-parameter stencils where the free-parameters are finely tuned to match the field scheme. In
most cases, the boundary (and near boundary) stencils couple poorly with the field template even though their
appearance is attractive locally. Corrective measures include an optimizing strategy for the free parameters of
the lower-order boundary schemes to achieve a preferable spatial resolution in the field. Finally, this proposed
procedure completes the recommended tri-testing (accuracy, stability and resolution) of a particular composite
compact template to understand the prevailing numerical properties through the entire solution domain before
beginning the computation.

2. Compact finite differencing

As emphasized earlier, compact finite differencing is widely accepted as a viable direction towards improved
spatial resolution and/or higher accuracy over traditional explicit schemes. Their derivation is accomplished
by appropriately satisfying the summation of respective coefficients in the Taylor series expansions of each
constituent. Both the neighboring quantities as well as their exact derivatives are treated in the series approx-
imation. Theoretically, the compact variety increases the spatial accuracy by two orders over their companion
explicit scheme. Inasmuch as the compact stencils are implicit, they require inversion of the multi-diagonal
coefficient matrix that raises the overall CPU requirement. Frequently, this added CPU cost is negligible rel-
ative to the overall computational expense of practical applications.

2.1. Spatial resolution

When attempting to properly resolve the smallest spatial scales, the advantages of high-order compact finite
differencing become quite clear. This fact is easily quantified by differentiating the basic Fourier wave
q(x) = eikx and profiling its compact differencing approximation over the range of resolvable wavenumbers
(up to the p wave). First, we will adopt the same nomenclature as Lele [7] where k and x are defined as the
dimensionless complex wavenumber and coordinate of the wave q(x). The dependent variable k resides inside
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the periodic domain [0, p]. Exact differentiation of q(x) with respect to x simply yields q 0(x)ex = ikq(x) where
full resolution of k ascribes a spectral method (except k 6¼ p). Conversely, compact finite differences approx-

imate the wave derivative as q0ðxÞfd ¼ ik̂qðxÞ where k̂ is defined as the dimensionless complex modified wave-
number. Deviations of the real and imaginary elements of k̂ from those of k are the key ingredients for
measuring the stencil resolution character. Notably, each stencil owns a unique distribution of k̂ within the
periodic domain.

A simple example for illustration purposes is the popular fourth-order Pade-type approximation of the
first-order derivative centered over the ith point;
Table
List of

Order

4c
5c
6c
q0iþ1 þ 4q0i þ q0i�1 ¼ 3ðqiþ1 � qi�1Þ=D ð2:1Þ
where D denotes the dimensionless local discrete point spacing. The variable q on the right side of (2.1) must be
known at neighboring points i ± 1. Substituting the exact Fourier wave expression for the q variable and its
derivatives at these discrete points gives a complex form of the modified resolvable wavenumber (k̂ ¼ k̂r þ ik̂i).
For the fourth-order Pade-type expression, k̂ is only real valued (k̂iD ¼ 0:0) and defined as
k̂rD ¼
3=2 sinðkDÞ

1þ 1=2 cosðkDÞ ð2:2Þ
Lele [7] introduced the numerical limit of resolving efficiency [e(d)] that quantifies the fraction of well-resolved

waves by a particular differencing stencil; e(d) = (kD)d/p Herein, we define the quantity d as the resolution
expectancy that is specified by the user; dr;i ¼ 1� j1� ðk̂DÞr;i=ðkDÞdj. Given this measure, 59%

[e(d90) 6 0.59] of the resolvable waves are efficiently resolved 90% (dr P 0.90) or better by the fourth-order
Pade-type scheme (see Table 1). Under the same computational molecule, this efficiency is well over 200% bet-
ter than the standard explicit second-order stencil [e(d90) 6 0.25]. Thus, compact differencing is much more
spectral-like than its explicit analog and leads to superior resolution of the finer resolvable scales. This dra-
matic improvement easily explains the recent gravitation toward compact finite differencing. Demand for a
more strict tolerance such as 95% (notation d95) reduces the resolving efficiency of the fourth-order Pade-type
scheme to just over 50% [e(d95) 6 0.50], which may call upon finer gridding to sufficiently resolve the fine-scale
physics.

2.2. Interior schemes

Interior schemes difference the neighboring quantities and their derivatives either symmetrically (central) or
asymmetrically (upwind) about the point of interest. They can be successfully applied throughout domains
having periodic boundary conditions as well as the interior nodes that are sufficiently away from non-periodic
boundaries to complete the explicit side of the stencil. The upwind category is most suitable for high-order
approximations of the non-conservative nonlinear terms in the governing equations. The compact stencils
studied in the present paper have the form
aq0iþ1 þ bq0i þ cq0i�1 ¼ gqiþ2 þ kqiþ1 þ aqi þ cqi�1 þ bqi�2 ð2:3Þ
where the variable q is known at the center (i) and neighboring points i ± 1 and i ± 2 throughout the domain
to reach fourth-, fifth- and sixth-order accuracy. Their respective coefficients g, k, a, c, b are listed in Table 1
along with the set a, b and c of the variable derivative q 0 at points i and i ± 1. Listed in the table is the resolving
efficiency of each compact stencil given an expected resolution efficiency of 90%. Interestingly, the fifth-order
1
coefficients and spatial resolution for several interior compact finite differencing stencils; 4–6: formal order

Coefficients: compact finite differences Resolution

a b c g k a c b

1.0 4.0 1.0 – 3.0 – 3.0 – 0.59
3.0 18.0 9.0 – 10.0 9.0 �18.0 �1.0 0.78

12.0 36.0 12.0 �1.0 28.0 – �28.0 1.0 0.70
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upwind scheme (5c) provides at least 90% efficiency over 78% of the resolvable waves, which is a 10% improve-
ment over the higher-order central stencil (6c) [e(d95) 6 0.70]. But this enhancement is often masked by the
inherent high dissipative error associated with upwind finite differencing over nearly one-half of the resolvable
wavenumbers.

Distribution of the modified wavenumber in the exact wavenumber space quantifies the dispersive and dis-
sipative errors of the finite-difference scheme. Exclusive of any time differencing errors, deviation of the real
part from the exact wavenumber measures the degree of dispersion (or phase error) while the imaginary half
indicates the level of expected dissipation. Both of these behaviors are obviously undesirable when attempting
to resolve the finest spatial scales, but they can be diminished through fine gridding techniques and/or high-
resolution differencing templates. These conventional options are easily illustrated by approximating the one-
dimensional propagation of a linear wave as defined by
Fig. 1.
order
ut þ cux ¼ 0 ð2:4Þ

with the wave speed c = 1 for brevity. Given the initial condition
uðx; t ¼ 0Þ ¼ 1

2
e� ln 2ðx=nÞ2 ð2:5aÞ
the exact solution for all time becomes
uðx; tÞ ¼ 1

2
e� ln 2ðx0=nÞ2 ð2:5bÞ
where x 0 = x � x0 � t. The spatial resolution of the simulation is defined by ratio Dx/n where Dx is the uni-
form one-dimensional grid spacing. To avoid adverse time differencing and stability errors, the linear wave
was time-advanced herein by the Euler method (first-order) with the stability coefficient set to a very small
value (CFL� 1.0).

Fig. 1 shows the spatial distribution of the real (dispersive error) and imaginary (dissipative error) elements
of the modified wavenumber for the present compact stencils. One can clearly see that the upwind stencil (5c)
will reduce the dispersive error at a preferred cost of induced dissipation for nearly half of the resolvable wave-
numbers. The lack of inherent dissipation in the central 4c and 6c schemes (fourth-order and sixth-order,
respectively) is readily evident in Fig. 2 (t = 400) as suggested by their oscillatory resolution of the linear wave.
At a relatively coarse grid spacing kD � 2.3, the resolution efficiency of the central 4c scheme is only 63%
(dr = 0.63) and attributes to the highest phase error. Conversely, the same uniform spacing (kD � 2.3) when
implementing the upwind-biased stencil dramatically improves the resolution efficiency to 95%, which is suf-
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Fig. 2. Solutions (a) and predictive error (b) of the linear wave equation using 4c, 5c and 6c finite difference schemes for the first-order
term at various grid spacing (kD).
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ficient to control the phase error while dampening the oscillations. This result confirms why upwind differenc-
ing is often chosen to control the phase and aliasing errors in regions of moderate gridding. But the induced
dissipation (di = �0.47) of the 5c stencil, although owning lowest dispersive error, broadens the wave base
while under-predicting the wave peak. Convergence of the 5c and 6c stencils with reduced grid spacing is plot-
ted in Fig. 2b; EðuÞ ¼

P
ðue � ufdÞ where ue and ufd are the exact and predicted waves at time t = 400. This

log-log plot verifies formal accuracy of the 5c and 6c stencils by calculating the slope of E(u) under finer grid
spacing (kD).

2.3. Non-periodic boundary schemes

The compact variety of non-periodic boundary schemes is typically one-sided (no fictitious points) and
should be no lower than one-order from the field scheme to preserve the respective formal spatial accuracy.
Their harmful effects on global numerical stability and accuracy have been thoroughly investigated by others
using various techniques [3,7,10,20]. Theoretically, the spatial order of a compact boundary stencil is unlimited
(given enough interior points), but their coupled resolution properties are actually far different from the adja-
cent field scheme. This fact is especially notable for the multi-parameter families. Herein, we will couple both
standard (no free parameters) and two-parameter one-sided compact schemes up to fourth-order accuracy
with the above interior schemes. The general expression of the former stencil has the form,
Table
List of

Order

2c
3c
4c
aq02 þ bq01 ¼ kq4 þ aq3 þ cq2 þ bq1 ð2:6Þ

where the first point lies on the boundary. Table 2 lists values for all the coefficients in (2.6) which reflect for-
ward projection of the stencil onto the adjacent interior nodes. Although tempting to examining the local dis-
persive and dissipative errors of this boundary stencil, it is actual quite futile at this point because these
characteristics are strongly influenced by the adjacent field scheme and vice versa.
2
coefficients for several compact one-sided differencing stencils; 2–4: formal order

Coefficients: compact one-sided differences

a b k a c b

2.0 2.0 – – 1.0 �1.0
4.0 2.0 – 1.0 4.0 �5.0

18.0 6.0 �1.0 9.0 9.0 �17.0
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Reducing the dispersive and dissipative errors of the compact boundary stencil in (2.6) is possible by either
compromising accuracy or projecting the stencil further into the interior domain. The new coefficients of both
stencils become free parameters that are selectively constrained to reach a desired result. Choosing the former
approach, Lele [7] constrained the two parameters of the second-order-accurate version of (2.6) to give neg-
ligible dissipation over all resolvable wavenumbers. Alternatively, projecting the stencil forward over two
additional field points preserves the fourth-order accuracy that simply appears as
aq02 þ bq01 ¼ gq6 þ nq5 þ kq4 þ aq3 þ cq2 þ bq1 ð2:7Þ

where (a, g) are considered the free parameters; one each from the explicit and implicit sides of the two-param-
eter family. The remaining coefficients in terms of these parameters are defined by (b = 1)
n ¼ �3þ a� 60g
12

; k ¼ 8� 3aþ 60g
6

; a ¼ �6þ 3a� 20g
2

;

c ¼ 24� 5aþ 30g
6

; b ¼ � 25þ 3aþ 12g
12

ðfourth-orderÞ ð2:8Þ
One should note that this two-parameter boundary stencil becomes fifth-order accurate as a one-parameter
family or a sixth-order-accurate scheme when all the coefficients are evaluated through Taylor series expan-
sions of their associate variables. We can also reduce (2.8) to a third-order-accurate two-parameter family
(a, n, g = 0) as defined by
k ¼ 2� a� 24n
6

; a ¼ �3þ 2aþ 12n
2

; c ¼ 6� a� 8n
2

;

b ¼ �11� 2aþ 6n
6

ðthird-orderÞ ð2:9Þ
which becomes fourth-order accurate as a one-parameter family or fifth-order accurate with all coefficients
defined uniquely. In the next section, we will study the prominent differences between local and projected spa-
tial resolution errors of these multi-parameter stencils when coupled with compact fourth, fifth and sixth-order
interior schemes.
3. Composite templates

A composite template is defined herein as one carrying at least two different compact finite difference sten-
cils. One of the stencils in the present templates is a boundary scheme, but this composition is not necessarily a
limiting factor. We will study templates owning field schemes whose explicit elements extend beyond the
boundary, therefore requiring low-order symmetric or high-order asymmetric stencils at the adjacent bound-
ary points. Because the composite templates are solved implicitly, the local wavenumber spectrum is not
unique to only the respective stencil. We emphasize that the individual spectra are locally connected and must
be quantified accordingly. This process deviates from previous evaluations that dealt with assessing the disper-
sive and dissipative nature of composite templates. Previous analyses examined the resolution errors of each
stencil separately. But that approach produces a false understanding of the local errors. This deception is nota-
bly important when multi-parameter stencils are finely tuned to the field scheme. In particular, the free-param-
eters of the boundary stencil are adjusted to reproduce a spectrum that closely mimics the adjacent interior
scheme. We will observe in the following section, that a decoupled analysis of the resultant composite template
will produce misleading profiles of the modified wavenumber spectra because the participating stencils are not
treated properly as communicative members.

3.1. Modified wave number

To correctly evaluate the modified wavenumber spectra of a composite template, we must first represent the
contributing stencils as a coupled linear system. This system may appear as
Aq0 ¼ RðqÞ=D ð3:1Þ
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where A is a tri-diagonal matrix comprised of the coefficients of the derivative vector (q 0) and R(q) is a vector
of the explicit elements. After substituting the approximated derivative q 0(x)fd of the basic Fourier wave into
(3.1), a second linear system is produced that can be represented as
i½GðkDÞ�fk̂Dg ¼ HðkDÞ ð3:2Þ

where G(kD) is a N · N tri-diagonal matrix and H(kD) is a N length vector. The variable N denotes the number
of nodal points holding a complete modified wavenumber spectrum over the same resolvable scales (kD 6 p).
A good test for applying (3.2) is the composite template of Lele [7] that was implemented by Chung and Luo
[21] for resolving the heat transfer of an impinging jet. Their composite template comprised a sixth-order
Pade-type interior scheme coupled with a one-sided third-order-accurate expression and fourth-order Pade-
type stencil at the boundary and first interior points, respectively. We will use the notation 3-4-6-4-3 to identify
this template that denotes the formal order of each stencil extending from boundary to boundary via the field
domain. The coefficients of this template are listed in Tables 1 and 2. The matrix G(kD) of the composite tem-
plate becomes
GðkDÞ ¼

2 4eikD

e�ikD 4 eikD

12e�ikD 36 12eikD

..

. ..
. ..

.

12e�ikD 36 12eikD

e�ikD 4 eikD

4e�ikD 2

2
6666666666664

3
7777777777775

ð3:3Þ
with the boundary (hb+), first point (h1) and interior (hf) explicit elements of the vector H(kD) defined by
hbþ ¼ �5þ 4eikD þ eikD ð3:4aÞ
h1 ¼ 3ðeikD � e�ikDÞ ð3:4bÞ
hf ¼ 28ðe2ikD � e�2ikDÞ � ðeikD � e�ikDÞ ð3:4cÞ
where the subsequent exponent (+) implies one-sided forward differences.
The modified wavenumber spectra of both the coupled and decoupled versions of template 3-4-6-4-3 are

plotted in Fig. 3. The coupled profiles represent solutions of the system in (3.2) with definitions ((3.3) and
(3.4)) over dimensionless wavenumbers 0 6 kD 6 p. Clearly, the disparity between companion profiles is obvi-
ous. Two important differences are the false impressions of small dispersive and dissipative errors at the
boundary. The dispersive profile of the decoupled stencil (3cb) suggests that 82% [e(d90) 6 0.82] of the resolv-
able waves hold at least a 90% resolving efficiency, but this resolution is actually only 28% [e(d90) 6 0.28] when
properly solved as a coupled composite template. At the boundary the actual dissipative error is more than
twice that of the decoupled profile over the same upper half of resolvable scales. This higher error propagates
well into the adjacent field. As illustrated in Fig. 3b, negligible levels are not detected until after the third inte-
rior point. Thus, a significant element of numerical dissipation exists near the boundary of the 3-4-6-4-3 com-
posite template that would be otherwise unknown through separate error analyses of each participating
constituent scheme.
3.2. Modified wave number: multi-parameter templates

Probably one of the most deceptive notions of reduced dispersive and dissipative errors at the boundaries
comes from fine-tuning the associated free parameters of a multi-parameter stencil to best meet the spatial res-
olution properties of the field scheme. Mathematically, we simply choose constraints that tend toward the
boundary condition k̂b

r;i ¼ k̂f
r:i for all resolvable wavenumbers (kD 6 p). Constraints on only the imaginary

component can be uniquely fulfilled when compact central differences are chosen to approximate the interior
derivatives, but the corresponding real part can only be matched at discrete resolvable wavenumbers (kD). For
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instance, only a single parameter would be open for adjustment in the two-parameter boundary stencils to
match the entire dispersive error profile of the field scheme. Lele [7] introduced this treatment using a one-
sided two-parameter family stencil that was second-order accurate. Adopting the notation in (2.7), the com-
plex form of his stencil (g = n = 0) for the modified wavenumber becomes (b = 1)
iðk̂DÞbðbþ aeikDÞ ¼ ke3ikD þ ae24ikD þ ceikD þ b ð3:5aÞ

where
a ¼ �1þ a� 6k
2

; c ¼ 2þ 3k; b ¼ �3� a� 2k
2

ðsecond-orderÞ ð3:5bÞ
Given the substitution k̂b
r;i ¼ k̂f

r:i where the real component is defined as k̂f
r ¼ real½ðk̂DÞf �, two expressions arise

from (3.5a) that reveal the real and imaginary ðk̂f
i Þ components of the interior modified wavenumber in terms

of the boundary free parameters (a, k). These expressions are (not reduced to simplest form)
ð1� cos 2kD� 2k̂f
r sin kD� 2k̂f

i cos kDÞa
¼ ð2 cos 3kD� 6 cos 2kDþ 6 cos kD� 2Þkþ 2k̂f

i � cos 2kDþ 4 cos kD� 3 ð3:6aÞ
and
ð2k̂f
r cos kD� 2k̂f

i sin kD� sin 2kDÞa ¼ ð2 sin 3kD� 6 sin 2kDþ 6 sin kDÞk� 2k̂f
r � sin 2kDþ 4 sin kD

ð3:6bÞ
Under the field constraint k̂f
i ðkD ¼ pÞ ¼ 0, the free parameter (k) on the explicit side of the stencil is

uniquely defined; k = �1/2. After setting the second free parameter to a = 4, the adjusted second-order
boundary stencil is tuned to the fourth-order Pade-type scheme (notation 22-4-22). In terms of expected res-
olution improvement, the new boundary stencil holds a dispersive error e(d90) 6 0.54 that mimics the interior
scheme e(d90) 6 0.59 as illustrated in Fig. 4a. Likewise, the dissipative error of this stencil (not shown) is nearly
negligible for all resolvable wavenumbers. But when the composite template is re-quantified as a strictly linked
system, this favorable image changes dramatically (Fig. 4b). The template actually holds only a moderate dis-
persive error (dr 6 0.7) at the boundary over the lower 1/3 of the spectrum e(d70) 6 0.30. Beyond resolvable
wavenumbers kD P p/2, this error quickly degrades to several orders of magnitude higher than the decoupled
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profile. Even the second interior point still indicates considerable dispersion over the upper 3/4s of resolvable
scales e(d90) 6 0.25. This new understanding of the true spatial resolution is equally reflective of the dissipative
error (not shown). This error only becomes negligible once past the second interior nodal point.

Other noteworthy samples of misleading resolution properties at the boundary (and adjacent interior
points) include the composite templates derived by Cook and Riley [22] and Kim and Lee [13]. The former
composite template comprised a sixth-order Pade-type interior scheme coupled with fifth-order compact sten-
cils at the boundary and first interior points (template 5-5-6-5-5). The latter work derived a complex composite
template that optimized two free parameters of separate spectral-like stencils at the boundary, first, second,
and remaining interior points. The formal order of each stencil was second, fourth, sixth, and sixth, respec-
tively (template 22-42-62-62-62-42-22). Only the dispersive errors of these composite templates are displayed
in Fig. 5. One can quickly see that each boundary stencil approaches the dispersive errors similar to that of
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the field scheme when the modified wave number of the composite template is evaluated in a decoupled fash-
ion. But like the previous examples, the dispersive errors are in fact quite large and broad banded at the
boundary, which would actually demand fine gridding to minimize their local effect on the resolved scales
of motion.

One final comment concerning the optimized composite template of Kim and Lee [13] is the sign change of
the decoupled imaginary component at the boundary over the upper half of resolvable wavenumbers (see
Fig. 6). They noted that this condition leads toward unstable solutions. But in their actual computations of
linear and nonlinear wave propagation, Kim and Lee further noted no difficulties with maintaining stability.
Realistically, this latter behavior should have been expected because the boundary dissipation of their com-
posite template over the higher resolvable scales is actually quite large.

3.3. Optimizing template parameters

Attempting to reproduce the field resolution properties at the boundary is a difficult task because the gov-
erning system is over-determinate. The procedure requires a free parameter for every constraint used to repro-
duce the spectrum, but their availability clearly has practical limitations. The match is somewhat simplified for
the compact central difference stencil because the imaginary component of the respective modified wavenum-
ber is trivial. Thus, only one constraint (and free parameter) is needed to match the entire spectrum. But when
aiming to mimic the corresponding dispersive error profile, small amounts of dissipative error are almost
unavoidable.

One option for reproducing both field spectra concurrently is to apply a least-squares technique to the gov-
erning expressions such as those of (3.6) for the second-order-accurate two-parameter system (a, k). Accord-
ingly, their vector forms can be written as
Fig. 6
qia ¼ bi þ rik and sia ¼ di þ tik ð3:7Þ

where the subscript (i) denotes the number of wavenumber increments chosen to replicate the field spectrum.
Rearranging these forms into unique expressions for each free parameter gives
Sia ¼ Ri and T ik ¼ Qi ð3:8aÞ

where
Si ¼ qiti � risi; Ri ¼ biti � diri and T i ¼ risi � qiti; Qi ¼ sibi � qidi ð3:8bÞ

We now seek representative values for the free parameters (a, k) by minimizing their error through a least-
squares approach. By defining the square of the errors E and F as
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E ¼ ðRi � SiaÞ2 and F ¼ ðT i � QikÞ
2 ð3:9Þ
and setting oE/oa = oF/ok = 0, the free parameters are evaluated as
a ¼ ðRiSiÞ=S2
i and k ¼ �ðT iQiÞ=T 2

i ð3:10Þ

Note that the above expressions for the two-parameter family cannot become singular because their denom-
inators can only approach zero if the numerator concurrently vanishes as well.

For the present illustrations of the least-squares approach, we will skip further treatment of the system in
(3.6) because the second-order-accurate boundary stencil does not preserve fourth-order accuracy in the field.
Instead, we will switch the boundary definition to a third-order-accurate two-parameter family (2.9). In their
non-simplest form, the vector forms in (3.7) become
qi ¼ �6k̂f
r sin kD� 6k̂f

i cos kDþ cos 3kD� 6 cos 2kDþ 3 cos kDþ 2

si ¼ 6k̂f
r cos kD� 6k̂f

i sin kDþ sin 3kD� 6 sin 2kDþ 3 sin kD

bi ¼ 6k̂f
i þ 2 cos 3kD� 9 cos 2kDþ 18 cos kD� 11

di ¼ �6k̂f
r þ 2 sin 3kD� 9 sin 2kDþ 18 sin kD

ri ¼ 6 cos 4kD� 24 cos 3kDþ 36 cos 2kD� 24 cos kDþ 6

ti ¼ 6 sin 4kD� 24 sin 3kDþ 36 sin 2kD� 24 sin kD

ð3:11Þ
where the free parameters of the finite difference stencil are (a,n). Applying the least-squares technique (3.10)
over all resolvable wavenumbers kD 6 p (100 increments) evaluates the free parameters as a = 3.5 and
n = 0.10408 to produce a suitable match between the boundary expression and a fourth-order Pade-type inte-
rior scheme. The remaining coefficients of the boundary stencil are evaluated using the relationships in (2.9).

Spectral distributions of the dispersive and dissipative errors at the boundary as determined for both the
decoupled and coupled optimized composite template (32-4-6-4-32) are shown in Fig. 7. While the decoupled
boundary spectra suggest profiles well-matched to the interior scheme, the actual distributions are quite poor.
Apparently, emphasizing a least-squares minimization over all resolvable wavenumbers does not guarantee
improvement of the resolution character of the two-parameter boundary stencil. A reasonable alternative
may be to target the best partial match over a sub-set of resolvable scales (kD < p). This idea proved appro-
priate for the boundary stencil as shown by the spectra in Fig. 8. By restricting the match to kD 6 p/2, 56% of
the resolvable waves now hold a 90% or better resolution efficiency; e(d90) 6 0.56. This improvement is nearly
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Fig. 8. Coupled dispersive and dissipative error distributions (partial least-squares fit, kD 6 p/2) of optimized composite template (32-4-6-
4-32); see notation in previous figure.

Table 3
List of coefficients for several one-sided two-parameter stencils with least-square minimization technique to the interior scheme; example
notation (32-4-5-4-32), 32: two parameter family, third-order accurate on boundary, 4: fourth-order accurate at first adjacent point, 5: fifth-
order-accurate upwinding in remaining interior

Template a g d k a c b

22-4-22 3.00000 – – �0.40429 2.21287 0.78713 �2.59571
32-4-32 3.50360 – 0.04198 �0.41852 2.25548 1.08028 �2.95922
42-4-42 3.64975 �0.00533 0.08080 �0.54485 2.52794 0.93189 �2.99044
32-4-5-4-32 3.50000 – 0.5299 �0.46195 2.31792 1.03805 �2.94701
42-4-5-4-42 3.58423 �0.01684 0.13287 �0.62715 2.54472 0.92896 �2.96255
32-4-6-4-32 3.50000 – 0.06025 �0.49099 2.36148 1.00901 �2.93975
42-4-6-4-42 3.58423 �0.01684 0.13287 �0.62715 2.54472 0.92896 �2.96255
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double that of the standard one-sided third-order compact stencil e(d90) 6 0.28. Coincidentally, the first inte-
rior point holds better resolution properties than the remaining field.

One should note at this point that the least-squares procedure achieved lowest resolution errors at the
boundary when the free parameters of the corresponding one-sided stencil were optimized against the adjacent
interior stencil regardless of the number of separate participating schemes in the composite template.
Although Table 3 lists different optimized values for the free parameters of each third-order two-parameter
stencil at the boundary, the variations in modified wavenumber were only subtle. Essentially, determination
of the parameters (a, n) in the third-order two-parameter family at the boundary were suitable for all compos-
ite templates tested herein that own a fourth-order Pade-type stencil at the adjacent interior point; i.e. tem-
plates 32-4-32, 32-4-6-4-32, etc.

4. Applications of the composite templates

Solving the one-dimensional linear convection and nonlinear Burgers equations should supply sufficient
evidence for correlating the resolution properties of the present composite templates with their predictive
error. More specifically, we seek to quantify the local effects of the dispersive and dissipative errors of the com-
pact boundary stencil on the resolved wave amplitudes and phase for various uniform grid spacing. These
computations involve placing a fictitious wall far downstream from the initial wave position where we can
assess the predicted exit state of the single wave relative to the exact solution.
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The governing system for one-dimensional propagation of a linear wave was previously presented in Eqs.
(2.4) and (2.5). The corresponding nonlinear form of Burgers equation appears as
ut þ uux ¼ luxx ð4:1Þ

where the convective derivative is non-conservative and partially stabilized by the pseudo-viscous parameter
(l). We choose the advective form of Burgers equation to facilitate treatment of both the central and upwind
field templates. At initial time t = 0, the exact wave is
uðx; t ¼ 0Þ ¼ 1� tanh
x

2l

� �
ð4:2aÞ
with the equivalent wave for all times defined by
uðx; tÞ ¼ 1� tanh
x0

2l

� �
ð4:2bÞ
where as before x 0 = x � x0 � t. Inasmuch as we desire to isolate the resolving power of the present composite
templates as applied to the convective derivative, the exact form of the pseudo-viscous term luxx was used in
the computations;
luxx ¼
1

2l
sech2ðv0Þ tanhðv0Þ ð4:3Þ
where v 0 = x 0/2l. With the viscous term present, each wave was time advanced using the second-order-accu-
rate Adams–Bashforth scheme. But like the linear convection computations, a small CFL value was chosen to
minimize the truncation error of the time derivative approximation.

Two solutions that highlight application of a standard and optimized composite template (notations 3-4-6-
4-3 and 32-4-6-4-32) to the advective term in Burgers equation are shown in Figs. 9a,b, 10a and b. Both
compact templates are asymptotically stable and theoretically preserve their formal order at the interior nodal
points. The corresponding modified wavenumber spectra were discussed previously (Figs. 3 and 8) where the
latter template reflects an optimized two-parameter family boundary stencil by the least-squares technique
(3.10). Four uniform grids were tested that varied from very coarse to fine spatial resolution; kD � 3p/4,
p/2, p/4 and p/16. The fictitious wall was placed 100 time units downstream of the initial wave position.

All four figures reveal improved predictions of the peak wave amplitude (x 0 = 0) with reduced grid spacing.
Not surprisingly, the coarsest grid results (kD � 3p/4) indicate a degradation of the wave amplitude and phase
by the optimized composite template (32-4-6-4-32). This result correlates well with its much larger dispersive
error. Apart from the coarsest spacing, this template gives a superior gain in the predictive accuracy as echoed
by its better overall resolution quality at the midrange to lower resolvable scales. For the finest grid (kD � p/16),
-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-20 -10 0 10 20

x

u

3-4-6-4-3
__, - - Exact

kΔ~3π/4
kΔ~ π/2

-0.1

0.1

a b

0.3

0.5

0.7

0.9

1.1

-20 -10 0 10 20

x

u

3-4-6-4-3
__, - - Exact

kΔ~3π/4
kΔ~ π/2

__, - - Exact
kΔ~3π/4
kΔ~ π/2

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-20 -10 0 10 20

x

u

3-4-6-4-3
__, - - Exact

kΔ~ π/4
kΔ~ π/16

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-20 -10 0 10 20

x

u

3-4-6-4-3
__, - - Exact

kΔ~ π/4
kΔ~ π/16

__, - - Exact
kΔ~ π/4
kΔ~ π/16

Fig. 9. Solutions of Burgers equation using composite template 3-4-6-4-3.
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Fig. 10. Solutions of Burgers equation using composite template 32-4-6-4-32.
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the results of both templates are almost indistinguishable. But this comparison is again not unexpected
because the resolution efficiency of the optimized compact template is only slightly improved over its counter-
part 3-4-6-4-3 template at the fine spacing kD � p/16; dr = 98% (3-4-6-4-3) versus dr = 99% (32-4-6-4-32).

Outside of the 2-4-2 composite, the above discussion and accompanying figures are qualitatively typical of
the remaining compact templates tested herein for advancing Burgers wave to the fictitious wall boundary. We
can obtain a clearer picture of each by evaluating their ability to predict the exact wave. The predictive errors as
quantified by the L2 norm of eight composite templates are plotted in Fig. 11 where kL2k ¼ ½

P
jue � ufdj2�1=2.

Each compact template was tested over the same four grid spacings (kD � 3p/4, p/2, p/4 and p/16) with the
respective errors calculated using one-half of the wave once centered over the fictitious wall (100 time units).
The predictive errors of the stencil mixtures (3-4-6-4-3), (22-4-22)7, (5-5-6-5-5)22 and (22-42-62-62-62-42-22)13

are those previously discussed and correlate with the wave number spectra in Figs. 3–5. Also, evaluation of
the L2 norm from solutions of the 4c scheme with periodic boundary conditions is included to demonstrate
proper convergence of Burgers equation with finer grid spacing.

Interestingly, no compact template converged on their formal order at the boundary. Outside of the two-
parameter family scheme (22-4-22)7, the templates share similar reductions of predictive error. All eight
templates as tested under the finest grid (kD � p/16) show the lowest errors, which by comparison are barely
separable. This observation agrees well with their equally low dispersive and dissipative errors. In Fig. 11, the
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most discernible disparity among the predictive errors occurs at the intermediate grid densities. And these dif-
ferences also correlate with their respective spatial resolution errors as well as their formal accuracy at the
boundary. For example, lowering the stencil accuracy at the wall boundary, such as sequentially from (5-5-
6-5-5)22 to (4-4-6-4-4) to (3-4-6-4-3), degraded their resolution power and concurrently raised the predictive
error. We note that this trend of performance specifically at the boundary agrees with previous observations
[3,20] regarding the field accuracy.

An attempt to reduce the predictive error of seven traditional composite templates (no free parameters) by
switching the boundary stencil to a two-parameter family is shown in Fig. 12. These templates included com-
pact central (4c and 6c) as well as compact upwind (5c) schemes at the field nodal points. Each boundary sten-
cil was optimized by the least-squares procedure (3.10) where the respective values for the free parameters are
listed in Table 3. Generally, optimizing both boundary parameters over 50–70% of the lower resolvable wave-
numbers generated the best overall improvement in predictive accuracy at all grid densities. At first glance, the
larger optimized stencils lowered the predictive error regardless of the formal order either at the boundary or
in the field with only minor improvements seen using the finest grid. Comparisons to their respective resolu-
tion spectra show good agreement with this trend. Essentially, the resolution errors varied considerably at the
coarsest spacing (kD � 3p/4) whereas they are consistently similar at the lowest resolvable scales. In view of all
the optimized templates, the 22-4-22 mixture clearly displays the largest gain in predictive accuracy over its
companion traditional scheme.

Quantifying the improvement as a percent reduction of predictive error is illustrated in Fig. 13 for six com-
pact templates where the most substantial gains of each template are visibly evident at the intermediate grid
densities. Among the six templates, the peak improvements come from those owning the leading differences
between the formal orders of the boundary and field schemes. Ostensibly, the optimized boundary stencil com-
pensates for a lost in predictive accuracy when it is lower than one order (>pth � 1) from the final interior
scheme. However, this result surfaces only when the free parameters are optimized against the compact scheme
at the first adjacent point. These final observations lead us to conclude that the larger optimized stencils at the
boundary can diminish the predictive error of the compact template regardless of the remaining composition
in the interior field.

Predictions of the linear wave propagation to the exit boundary (400 time units) by the six optimized com-
posite templates are shown in Fig. 14a. Unlike the applications to Burgers equation, the higher-order field
templates gave lowest errors. But as expected, this difference diminished under the finest grid spacing
(kD � p/16) because their dispersive errors at this spatial resolution are essentially equivalent. As observed
previously in the Burger wave predictions, none of the boundary stencils converged on their formal order with
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Fig. 14. Predictive errors (L2 norm) and percent improvement of optimized composite templates as applied to the linear convection
equation.

0

10

20

30

40

0 0.5 1 1.5 2 2.5

kΔ

%
 Im

p
ro

ve
m

en
t

 3-4-3

 4-4-4

 3-4-5-4-3

 3-4-6-4-3

 4-4-5-4-4

 4-4-6-4-4

32-4-5-4-32

32-4-32

42-4-42

42-4-5-4-42

32-4-6-4-32

42-4-6-4-42

0

10

20

30

40

0 0.5 1 1.5 2 2.5

kΔ

%
 Im

p
ro

ve
m

en
t

 3-4-3

 4-4-4

 3-4-5-4-3

 3-4-6-4-3

 4-4-5-4-4

 4-4-6-4-4

32-4-5-4-32

32-4-32

42-4-42

42-4-5-4-42

32-4-6-4-32

42-4-6-4-42

32-4-5-4-32

32-4-32

42-4-42

42-4-5-4-42

32-4-6-4-32

42-4-6-4-42

Fig. 13. Percent improvement of predictive error after switching boundary stencil from the standard to an optimized multi-parameter
family expression.

574 S.A. Jordan / Journal of Computational Physics 221 (2007) 558–576
reduced grid spacing. Typically, the larger templates gave no better than second-order convergence. Improve-
ment in the predictive error of the pure wave at exit between the respective standard and optimized templates
is illustrated in Fig. 14b. Recomputing the linear wave using the optimized templates follows a trend similar to
the Burgers wave predictions, but their levels of error improvement are noticeably lower.

5. Final remarks

Every composition of two or more compact finite differencing stencils own three global characteristics that
are clearly fundamental to our expected understanding. These properties center on the composite’s stability,
accuracy and resolution. Prior to the present effort, only the field accuracy and global stability were properly
analyzed as a fully coupled system. The spatial resolution in terms of their dispersive and dissipative errors was
routinely quantified as unique properties of each participating stencil that were independent from their
neighboring schemes. Herein, observations of the local resolution errors between the decoupled and coupled
templates clearly reveal that each stencil is strongly linked within the composite. While a close separate match
can appear between a multi-parameter family stencil at the boundary and the adjacent interior scheme, their
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coupled profiles prove otherwise. Typically, the dispersive and dissipative errors of the boundary stencil over
the upper half of resolvable scales bear little resemblance to the corresponding resolution efficiency within the
field. Herein, we moderately relax this discrepancy by developing a least-squares method to optimize the multi-
parameter family stencils. Solutions of the linear convection and Burgers equations showed best improvements
in the template accuracy over the intermediate range of resolvable scales.

Notably, many solution errors arise when applying composite compact finite differencing to resolve the fine
scale physics. The present work only isolates those errors resulting from their reduced resolving properties as
compared to a perfect resolution approach like spectral methods. Other effects such as intermittent explicit
filtering complicate the analysis. Jordan [23] showed that explicit filtering modifies the resolvable wavenum-
bers twice leading to higher resolution errors as given by the respective wavenumber spectra. Thus, the pro-
cedure develop here to quantify the resolution properties of composite compact templates requires further
adjustments to account for the coupling effects of explicit filtering.

We reemphasize that the multi-parameter family stencils were optimized against the adjacent (not final)
interior scheme to yield the best performance with lower resolution errors of the respective composite tem-
plate. For instance, the free parameters of the 32-4-6-4-32 template were optimized using the spectra of the
adjacent 4c stencil rather than the final 6c scheme. One apparent improvement to this approach may be to
first optimize the free parameters of an extended 4c stencil to the 6c scheme, then complete the template by
subsequently optimizing the boundary scheme. This approach should lead to an improved resolution charac-
ter of the composite compact template over a wider range of resolvable wavenumbers.

Lastly, projecting this new understanding to three-dimensional applications such as resolving turbulence
and acoustic characteristics sparks many issues. Apparently, raising the formal order of the field template does
little to raise the near wall resolution. One should only expect negligible improvement in the local predictions
by simply substituting a higher-resolution compact interior scheme along grid lines tangential to the bound-
ary. Focus must be centered on lowering the resolution errors of the local compact stencils themselves. This
reduction is possible by replacing the standard compact one-sided scheme and adjacent stencils with optimized
free-parameter families by a least-squares technique (or similar method). The superior spatial resolution will
propagate far into the interior while concurrently easing the demand for local fine grid spacing. This argument
equally applies to the field solutions where grid discontinuities such as branch cuts and sub-domain bound-
aries call for stencils dissimilar from the field. Global analyses of the composite field template should take
place prior to the computation to properly understand their prevailing resolution properties as well as their
stability and accuracy.
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